Boosting meta-learning with simulated data complexity measures

Author:

Garcia Luís P.F.1,Rivolli Adriano2,Alcoba Edesio3,Lorena Ana C.4,de Carvalho André C.P.L.F.3

Affiliation:

1. Department of Computer Science, University of Brasília, Brasília, Brazil

2. Computing Department, Technological University of Paraná, Paraná, Brazil

3. Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, Brazil

4. Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes, São Paulo, Brazil

Abstract

Meta-Learning has been largely used over the last years to support the recommendation of the most suitable machine learning algorithm(s) and hyperparameters for new datasets. Traditionally, a meta-base is created containing meta-features extracted from several datasets along with the performance of a pool of machine learning algorithms when applied to these datasets. The meta-features must describe essential aspects of the dataset and distinguish different problems and solutions. However, if one wants the use of Meta-Learning to be computationally efficient, the extraction of the meta-feature values should also show a low computational cost, considering a trade-off between the time spent to run all the algorithms and the time required to extract the meta-features. One class of measures with successful results in the characterization of classification datasets is concerned with estimating the underlying complexity of the classification problem. These data complexity measures take into account the overlap between classes imposed by the feature values, the separability of the classes and distribution of the instances within the classes. However, the extraction of these measures from datasets usually presents a high computational cost. In this paper, we propose an empirical approach designed to decrease the computational cost of computing the data complexity measures, while still keeping their descriptive ability. The proposal consists of a novel Meta-Learning system able to predict the values of the data complexity measures for a dataset by using simpler meta-features as input. In an extensive set of experiments, we show that the predictive performance achieved by Meta-Learning systems which use the predicted data complexity measures is similar to the performance obtained using the original data complexity measures, but the computational cost involved in their computation is significantly reduced.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3