An efficient method for time series similarity search using binary code representation and hamming distance

Author:

Zhang Haowen,Dong Yabo,Li Jing,Xu Duanqing

Abstract

Time series similarity search is an essential operation in time series data mining and has received much higher interest along with the growing popularity of time series data. Although many algorithms to solve this problem have been investigated, there is a challenging demand for supporting similarity search in a fast and accurate way. In this paper, we present a novel approach, TS2BC, to perform time series similarity search efficiently and effectively. TS2BC uses binary code to represent time series and measures the similarity under the Hamming Distance. Our method is able to represent original data compactly and can handle shifted time series and work with time series of different lengths. Moreover, it can be performed with reasonably low complexity due to the efficiency of calculating the Hamming Distance. We extensively compare TS2BC with state-of-the-art algorithms in classification framework using 61 online datasets. Experimental results show that TS2BC achieves better or comparative performance than other the state-of-the-art in accuracy and is much faster than most existing algorithms. Furthermore, we propose an approximate version of TS2BC to speed up the query procedure and test its efficiency by experiment.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3