Numerical investigation of arterial stenosis location affecting hemodynamics considering microcirculation function

Author:

He Fan1,Wang Xinyu1,Hua Lu2,Guo Tingting2

Affiliation:

1. School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China

2. Thrombosis Center, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Abstract

BACKGROUND: In recent years, arterial stenosis has become one of the serious diseases threatening people’s life and health. OBJECTIVE: The main purpose of the present study is to examine the changes of hemodynamic parameters in different stenosis locations of arteries. METHODS: An arterial stenosis model with fluid-structure interaction and microcirculation as the outlet boundary of seepage is adopted in this paper. Considering the interaction between blood and arterial wall, a numerical simulation is carried out using the finite element method. RESULTS: The results show that hemodynamic parameters are sensitive to the change of stenosis location. The closer to the microcirculation zone the stenosis location, the lower the blood flow velocity, pressure and the wall shear stress. In addition, the velocity trend is transformed from the gradual increase to decrease with the increasing distance away from the inlet when the stenosis location moves to the microcirculation zone. CONCLUSION: This work proves that the stenosis location has a great influence on hemodynamics based on microcirculation function. Microcirculation is an important factor that cannot be ignored in the numerical simulation of arterial hemodynamics. The numerical results could provide the potential of clinical preconditions for disease diagnosis and treatment.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3