Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Hemodynamics after Carotid Artery Stenosis Operation: A Case Study

Author:

Polanczyk Andrzej,Podgorski MichalORCID,Wozniak Tomasz,Stefanczyk Ludomir,Strzelecki Michal

Abstract

Background and objectives: Brain ischemic stroke is caused by impaired or absolutely blocked blood flow into the brain regions. Despite the large number of possible origins, there is no general strategy for preventive treatment. In this paper, we aimed to predict the hemodynamics in a patient who experienced a critical stenosis operation in the carotid artery. This is a unique study where we used medical data together with the computational fluid (CFD) technique not to plan the surgery, but to predict its outcome. Materials and Methods: AngioCT data and blood perfusion of brain tissue (CT-perfusion) together with CFD technique were applied for stroke formation reconstruction in different clinical conditions. With the use of self-made semiautomatic algorithm for image processing and 3DDoctror software, 3D-vascular geometries before and after surgical intervention were reconstructed. As the paper is focused on the analysis of stroke appearance, apparent stroke was simulated as higher and lower pressure values in the cranial part due to different outcomes of the surgical intervention. This allowed to investigate the influence of spatial configuration and pressure values on blood perfusion in the analyzed circulatory system. Results: Application of CFD simulations for blood flow reconstruction for clinical conditions in the circulatory system accomplished on average 98.5% and 98.7% accuracy for CFD results compared to US-Doppler before and after surgical intervention, respectively. Meanwhile, CFD results compared to CT-perfusion indicated an average 89.7% and 92.8% accuracy before and after surgical intervention, respectively. Thus, the CFD is a reliable approach for predicting the patient hemodynamics, as it was confirmed by postoperative data. Conclusions: Our study indicated that the application of CFD simulations for blood flow reconstruction for clinical conditions in circulatory system reached 98% and 90% accuracy for US-Doppler and CT-perfusion, respectively. Therefore, the proposed method might be used as a tool for reconstruction of specific patients’ hemodynamics after operation of critical stenosis in the carotid artery. However, further studies are necessary to confirm its usefulness in clinical practice.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3