A fault diagnosis method of rolling element bearing based on improved PSO and BP neural network

Author:

Song Xudong1,Wang Hao1,Liu Yifan1,Wang Zi1,Cui Yunxian1

Affiliation:

1. Big data & Intelligent System Lab, Dalian Jiaotong University, China

Abstract

Aiming at the inherent defects of BP neural network in the field of rolling bearing fault diagnosis, based on the optimization of particle swarm optimization algorithm, this paper uses a variety of optimization strategies to optimize the particle swarm optimization algorithm, and then uses the optimized particle swarm optimization algorithm to optimize the BP neural network. Therefore, a new fault diagnosis method (Dual Strategy Particle Swarm Optimization BP neural network, DSPSOBP) is proposed. DSPSOBP fault diagnosis method is mainly divided into two steps. The first step is EMD decomposition of vibration signal, and the second step is to classify rolling bearing faults by using BP neural network optimized by Double Strategy Particle Swarm Optimization algorithm. Experiments show that DSPSOBP has stronger advantages than BP neural network basic fault diagnosis model.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference19 articles.

1. Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis;Li;Measurement,2019

2. Time-domain fault diagnosis method based on rolling machinery rolling bearings;Lin Shuiquan;Automation Technology and Application,2020

3. Bearing Fault Diagnosis Based on BP Neural Network and Transfer Learning[J];Zhang;Journal of Physics: Conference Series

4. , Genetic algorithm optimized BP neural network port crane fault diagnosis;Qian Zhiyuan;Machinery Manufacturing and Automation,2019

5. Study on A Fault Diagnosis Method ofRolling Element Bearing Based on Improved ACOand SVM Model;Wu;International Journal of Future GenerationCommunication and Networking,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3