Time-optimized sequential decision making for service management in smart city environments

Author:

ALFahad Saleh1ORCID,Anagnostopoulos Christos1ORCID,Kolomvatsos Kostas2ORCID

Affiliation:

1. School of Computing Science, University of Glasgow, Glasgow, UK

2. Department of Informatics & Telecommunications, University of Thessaly, Volos, Greece

Abstract

Edge Computing is a new computing paradigm that aims to enhance the Quality of Service (QoS) of applications running close to end users. However, edge nodes can only host a subset of all the available services and collected data due to their limited storage and processing capacity. As a result, the management of edge nodes faces multiple challenges. One significant challenge is the management of the services present at the edge nodes especially when the demand for them may change over time. The execution of services is requested by incoming tasks, however, services may be absent on an edge node, which is not so rare in real edge environments, e.g., in a smart cities setting. Therefore, edge nodes should deal with the timely and wisely decision on whether to perform a service replication (pull-action) or tasks offloading (push-action) to peer nodes when the requested services are not locally present. In this paper, we address this decision-making challenge by introducing an intelligent mechanism formulated upon the principles of optimal stopping theory and applying our time-optimized scheme in different scenarios of services management. A performance evaluation that includes two different models and a comparative assessment that includes one model are provided found in the respective literature to expose the behavior and the advantages of our approach which is the OST. Our methodology (OST) showcases the achieved optimized decisions given specific objective functions over services demand as demonstrated by our experimental results.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3