Task offloading in mobile edge computing using cost-based discounted optimal stopping

Author:

ALFahad Saleh1,Wang Qiyuan1,Anagnostopoulos Christos1,Kolomvatsos Kostas2

Affiliation:

1. Knowledge and Data Engineering Systems, School of Computing Science, University of Glasgow , Glasgow , UK

2. Department of Informatics & Telecommunications, University of Thessaly , Thessaly , Greece

Abstract

Abstract Mobile edge computing (MEC) paradigm has emerged to improve the quality of service & experience of applications deployed in close proximity to end-users. Due to their restricted computational and communication resources, MEC nodes can provide access to a portion of the entire set of services and data gathered. Therefore, there are several obstacles to their management. Keeping track of all the services offered by the MEC nodes is challenging, particularly if their demand rates change over time. Received tasks (such as, analytics queries, classification tasks, and model learning) require services to be invoked in real MEC use-case scenarios, e.g., smart cities. It is not unusual for a node to lack the necessary services or part of them. Undeniably, not all the requested services may be locally available; thus, MEC nodes must deal with the timely and appropriate choice of whether to carry out a service replication (pull action) or tasks offloading (push action) to peer nodes in a MEC environment. In this study, we contribute with a novel time-optimized mechanism based on the optimal stopping theory, which is built on the cost-based decreasing service demand rates evidenced in various service management situations. Our mechanism tries to optimally solve the decision-making dilemma between pull and push action. The experimental findings of our mechanism and its comparative assessment with other methods found in the literature showcase the achieved optimal decisions with respect to certain cost-based objective functions over dynamic service demand rates.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3