A novel hybrid deep learning model for taxi demand forecasting based on decomposition of time series and fusion of text data

Author:

Zhu Kun1,Zhang Shuai1,Zhang Wenyu1,Zhang Zhiqiang1

Affiliation:

1. School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China

Abstract

Accurate taxi demand forecasting is significant to estimate the change of demand to further make informed decisions. Although deep learning methods have been widely applied for taxi demand forecasting, they neglect the complexity of taxi demand data and the impact of event occurrences, making it hard to effectively model the taxi demand in highly dynamic areas (e.g., areas with frequent event occurrences). Therefore, to achieve accurate and stable taxi demand forecasting in highly dynamic areas, a novel hybrid deep learning model is proposed in this study. First, to reduce the complexity of taxi demand time series, the seasonal-trend decomposition procedures based on loess is employed to decompose the time series into three simpler components (i.e., seasonal, trend, and remainder components). Then, different forecasting methods are adopted to handle different components to obtain robust forecasting results. Moreover, considering the instability and nonlinearity of the remainder component, this study proposed to fuse the event features (in particular, text data) to capture the unusual fluctuation patterns of remainder component and solve its extreme value problem. Finally, genetic algorithm is applied to determine the optimal weights for integrating the forecasting results of three components to obtain the final taxi demand. The experimental results demonstrate the better accuracy and reliability of the proposed model compared with other baseline forecasting models.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference38 articles.

1. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions;Castro-Neto;Expert Systems with Applications,2009

2. Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting;Chen;Energy Conversion and Management,2019

3. STL: a seasonal-trend decomposition;Cleveland;Journal of Official Statistics,1990

4. Statistical comparisons of classifiers over multiple data sets;Demšar;Journal of Machine Learning Research,2006

5. A comparison of alternative tests of significance for the problem of m rankings;Friedman;The Annals of Mathematical Statistics,1940

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3