A Pragmatic Approach to Semantic Annotation for Search of Legal Texts – An Experiment on GDPR

Author:

Nazarenko Adeline1,Lévy François1,Wyner Adam2

Affiliation:

1. LIPN, University Sorbonne Paris Nord, France

2. Department of Computer Science, Swansea University, United Kingdom

Abstract

Tools must be developed to help draft, consult, and explore textual legal sources. Between statistical information retrieval and the formalization of textual rules for automated legal reasoning, we defend a more pragmatic third way that enriches legal texts with a coarse-grained, interpretation-neutral, semantic annotation layer. The aim is that legal texts can be enriched on a large scale at a reasonable cost, paving the way for new search capabilities that will facilitate mining of legal sources. This new approach is illustrated on a proof-of-concept experiment that consisted in semantically annotating a significant part of the French version of the GDPR. The paper presents the design methodology of the annotation language, a first version of a Core Legal Annotation Language (CLAL), together with its formalization in XML, the gold standard resulting from the annotation of GDPR, and examples of user questions that can be better answered by semantic than by plain text search. This experimentation demonstrates the potential of the proposed approach and provides a basis for further development. All resources developed for that GDPR experiment are language independent and are publicly available.

Publisher

IOS Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering significant topics from legal decisions with selective inference;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-02-26

2. NLP-Based Automated Compliance Checking of Data Processing Agreements Against GDPR;IEEE Transactions on Software Engineering;2023-09

3. The Dutch Law as a Semantic Role Labeling Dataset;Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law;2023-06-19

4. Thirty years of artificial intelligence and law: the third decade;Artificial Intelligence and Law;2022-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3