Affiliation:
1. Yong Pung How School of Law, Singapore Management University School, Singapore
Abstract
We propose and evaluate an automated pipeline for discovering significant topics from legal decision texts by passing features synthesized with topic models through penalized regressions and post-selection significance tests. The method identifies case topics significantly correlated with outcomes, topic-word distributions which can be manually interpreted to gain insights about significant topics, and case-topic weights which can be used to identify representative cases for each topic. We demonstrate the method on a new dataset of domain name disputes and a canonical dataset of European Court of Human Rights violation cases. Topic models based on latent semantic analysis as well as language model embeddings are evaluated. We show that topics derived by the pipeline are consistent with legal doctrines in both areas and can be useful in other related legal analysis tasks.
This article is part of the theme issue ‘A complexity science approach to law and governance’.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A complexity science approach to law and governance;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-02-26