Asymmetric Dopaminergic Dysfunction in Brain-First versus Body-First Parkinson’s Disease Subtypes

Author:

Knudsen Karoline1,Fedorova Tatyana D.1,Horsager Jacob1,Andersen Katrine B.1,Skjærbæk Casper1,Berg Daniela2,Schaeffer Eva2,Brooks David J.13,Pavese Nicola13,Van Den Berge Nathalie1,Borghammer Per1

Affiliation:

1. Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark

2. Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany

3. Institute of Translational and Clinical Research, Newcastle, UK

Abstract

Background: We have hypothesized that Parkinson’s disease (PD) comprises two subtypes. Brain-first, where pathogenic α-synuclein initially forms unilaterally in one hemisphere leading to asymmetric nigrostriatal degeneration, and body-first with initial enteric pathology, which spreads through overlapping vagal innervation leading to more symmetric brainstem involvement and hence more symmetric nigrostriatal degeneration. Isolated REM sleep behaviour disorder has been identified as a strong marker of the body-first type. Objective: To analyse striatal asymmetry in [18F]FDOPA PET and [123I]FP-CIT DaT SPECT data from iRBD patients, de novo PD patients with RBD (PD+RBD) and de novo PD patients without RBD (PD-RBD). These groups were defined as prodromal body-first, de novo body-first, and de novo brain-first, respectively. Methods: We included [18F]FDOPA PET scans from 21 iRBD patients, 11 de novo PD+RBD, 22 de novo PD-RBD, and 18 controls subjects. Also, [123I]FP-CIT DaT SPECT data from iRBD and de novo PD patients with unknown RBD status from the PPPMI dataset was analysed. Lowest putamen specific binding ratio and putamen asymmetry index (AI) was defined. Results: Nigrostriatal degeneration was significantly more symmetric in patients with RBD versus patients without RBD or with unknown RBD status in both FDOPA (p = 0.001) and DaT SPECT (p = 0.001) datasets. Conclusion: iRBD subjects and de novo PD+RBD patients present with significantly more symmetric nigrostriatal dopaminergic degeneration compared to de novo PD-RBD patients. The results support the hypothesis that body-first PD is characterized by more symmetric distribution most likely due to more symmetric propagation of pathogenic α-synuclein compared to brain-first PD.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3