Short-Term Memory Binding Distinguishing Amnestic Mild Cognitive Impairment from Healthy Aging: A Machine Learning Study

Author:

Martínez-Florez Juan F.1,Osorio Juan D.1,Cediel Judith C.12,Rivas Juan C.345,Granados-Sánchez Ana M.6,López-Peláez Jéssica7,Jaramillo Tania1,Cardona Juan F.1

Affiliation:

1. Instituto de Psicología, Universidad del Valle, Santiago de Cali, Colombia

2. Departamento de Estudios Psicológicos, Facultad de Derecho y Ciencias Sociales, Universidad ICESI , Santiago de Cali, Colombia

3. Departamento de Psiquiatría, Facultad de Salud, Universidad del Valle, Santiago de Cali, Colombia

4. Hospital Departamental Psiquiátrico Universitario del Valle, Santiago de Cali, Colombia.

5. Departamento de Psiquiatría, Fundación Valle del Lili, Santiago de Cali, Colombia

6. Departamento de Imágenes Diagnósticas, Fundación Valle del Lili, Santiago de Cali, Colombia

7. Universidad Santiago de Cali, Santiago de Cali, Colombia

Abstract

Background: Amnestic mild cognitive impairment (aMCI) is the most common preclinical stage of Alzheimer’s disease (AD). A strategy to reduce the impact of AD is the early aMCI diagnosis and clinical intervention. Neuroimaging, neurobiological, and genetic markers have proved to be sensitive and specific for the early diagnosis of AD. However, the high cost of these procedures is prohibitive in low-income and middle-income countries (LIMCs). The neuropsychological assessments currently aim to identify cognitive markers that could contribute to the early diagnosis of dementia. Objective: Compare machine learning (ML) architectures classifying and predicting aMCI and asset the contribution of cognitive measures including binding function in distinction and prediction of aMCI. Methods: We conducted a two-year follow-up assessment of a sample of 154 subjects with a comprehensive multidomain neuropsychological battery. Statistical analysis was proposed using complete ML architectures to compare subjects’ performance to classify and predict aMCI. Additionally, permutation importance and Shapley additive explanations (SHAP) routines were implemented for feature importance selection. Results: AdaBoost, gradient boosting, and XGBoost had the highest performance with over 80%success classifying aMCI, and decision tree and random forest had the highest performance with over 70%success predictive routines. Feature importance points, the auditory verbal learning test, short-term memory binding tasks, and verbal and category fluency tasks were used as variables with the first grade of importance to distinguish healthy cognition and aMCI. Conclusion: Although neuropsychological measures do not replace biomarkers’ utility, it is a relatively sensitive and specific diagnostic tool for aMCI. Further studies with ML must identify cognitive performance that differentiates conversion from average MCI to the pathological MCI observed in AD.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3