A Transformer Approach for Cognitive Impairment Classification and Prediction

Author:

Liu Houjun1,Weakley Alyssa M.2,Zhang Jiawei3,Liu Xin3

Affiliation:

1. Department of Computer Science, Stanford University, Stanford

2. Department of Neurology

3. Department of Computer Science, University of California, Davis, CA

Abstract

Introduction: Early classification and prediction of Alzheimer disease (AD) and amnestic mild cognitive impairment (aMCI) with noninvasive approaches is a long-standing challenge. This challenge is further exacerbated by the sparsity of data needed for modeling. Deep learning methods offer a novel method to help address these challenging multiclass classification and prediction problems. Methods: We analyzed 3 target feature-sets from the National Alzheimer’s Coordinating Center (NACC) dataset: (1) neuropsychological (cognitive) data; (2) patient health history data; and (3) the combination of both sets. We used a masked Transformer-encoder without further feature selection to classify the samples on cognitive status (no cognitive impairment, aMCI, AD)—dynamically ignoring unavailable features. We then fine-tuned the model to predict the participants’ future diagnosis in 1 to 3 years. We analyzed the sensitivity of the model to input features via Feature Permutation Importance. Results: We demonstrated (1) the masked Transformer-encoder was able to perform prediction with sparse input data; (2) high multiclass current cognitive status classification accuracy (87% control, 79% aMCI, 89% AD); (3) acceptable results for 1- to 3-year multiclass future cognitive status prediction (83% control, 77% aMCI, 91% AD). Conclusion: The flexibility of our methods in handling inconsistent data provides a new venue for the analysis of cognitive status data.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3