Enhanced computed tomography radiomics-based machine-learning methods for predicting the Fuhrman grades of renal clear cell carcinoma

Author:

Yin Ruo-Han1,Yang You-Chang1,Tang Xiao-Qiang1,Shi Hai-Feng1,Duan Shao-Feng2,Pan Chang-Jie1

Affiliation:

1. Department of Radiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, China

2. Precision Health Institution, GE Healthcare (China), Shanghai, China

Abstract

OBJECTIVE: To develop and test an optimal machine learning model based on the enhanced computed tomography (CT) to preoperatively predict pathological grade of clear cell renal cell carcinoma (ccRCC). METHODS: A retrospective analysis of 53 pathologically confirmed cases of ccRCC was performed and 25 consecutive ccRCC cases were selected as a prospective testing set. All patients underwent routine preoperative abdominal CT plain and enhanced scans. Renal tumor lesions were segmented on arterial phase images and 396 radiomics features were extracted. In the training set, seven discrimination classifiers for high- and low-grade ccRCCs were constructed based on seven different machine learning models, respectively, and their performance and stability for predicting ccRCC grades were evaluated through receiver operating characteristic (ROC) analysis and cross-validation. Prediction accuracy and area under ROC curve were used as evaluation indices. Finally, the diagnostic efficacy of the optimal model was verified in the testing set. RESULTS: The accuracies and AUC values achieved by support vector machine with radial basis function kernel (svmRadial), random forest and naïve Bayesian models were 0.860±0.158 and 0.919±0.118, 0.840±0.160 and 0.915±0.138, 0.839±0.147 and 0.921±0.133, respectively, which showed high predictive performance, whereas K-nearest neighborhood model yielded lower accuracy of 0.720±0.188 and lower AUC value of 0.810±0.150. Additionally, svmRadial had smallest relative standard deviation (RSD, 0.13 for AUC, 0.17 for accuracy), which indicates higher stability. CONCLUSION: svmRadial performs best in predicting pathological grades of ccRCC using radiomics features computed from the preoperative CT images, and thus may have high clinical potential in guiding preoperative decision.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3