Application of enhanced computed tomography-based radiomics nomogram analysis to differentiate metastatic ovarian tumors from epithelial ovarian tumors

Author:

Zhang Aining1,Hu Qiming2,Ma Zhanlong1,Song Jiacheng1,Chen Ting1

Affiliation:

1. Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China

2. Department of Obstetrics & Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Abstract

OBJECTIVE: To investigate the value of nomogram analysis based on conventional features and radiomics features of computed tomography (CT) venous phase to differentiate metastatic ovarian tumors (MOTs) from epithelial ovarian tumors (EOTs). METHODS: A dataset involving 286 patients pathologically confirmed with EOTs (training cohort: 133 cases, validation cohort: 68 cases) and MOTs (training cohort: 54 cases, validation cohort: 31 cases) is assembled in this study. Radiomics features are extracted from the venous phase of CT images. Logistic regression is employed to build models based on conventional features (model 1), radiomics features (model 2), and the combination of model 1 and model 2 (model 3). Diagnostic performance is assessed and compared. Additionally, a nomogram is plotted for model 3, and decision curve analysis is applied for clinical use. RESULTS: Age, abdominal metastasis, para-aortic lymph node metastasis, location, and septation are chosen to build Model 1. Ten optimal radiomics features are ultimately selected and radiomics score (rad-score) is calculated to build Model 2. Nomogram score is calculated to build model 3 that shows optimal diagnostic performance in both the training (AUC = 0.952) and validation cohorts (AUC = 0.720), followed by model 1 (AUC = 0.872 for training cohort and AUC = 0.709 for validation cohort) and model 2 (AUC = 0.833 for training cohort and AUC = 0.620 for validation cohort). Additionally, Model 3 achieves accuracy, sensitivity, and specificity of 0.893, 0.880, and 0.926 in the training cohort and 0.737, 0.853, and 0.613 in the validation cohort. CONCLUSION: Model 3 demonstrates the best diagnostic performance for preoperative differentiation of MOTs from EOTs. Thus, nomogram analysis based on Model 3 may be used as a biomarker to differentiate MOTs from EOTs.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference32 articles.

1. Ovarian cancer statistics;Torre;CA Cancer J Clin,2018

2. The pathogenesis, diagnosis, and management of metastatic tumors to the ovary: A comprehensive review;Kubecek;Clin Exp Metastasis,2017

3. Epithelial ovarian cancer;Lheureux;Lancet,2019

4. Ovarian cancer;Jayson;Lancet,2014

5. Non-genitaltract metastases to the ovaries presented as ovarian tumors inSweden-: Occurrence, origin and survival compared toovarian cancer;Skírnisdóttir;Gynecol Oncol,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3