Model-based study of the human cupular time constant

Author:

Dai Mingjia1,Klein Avniel1,Cohen Bernard1,Raphan Theodore2

Affiliation:

1. Departments of Neurology and Physiology and Biophysics, Mount Sinai School of Medicine, New York, USA

2. Department of Computer and Information Science, Brooklyn College, CUNY, NY, USA

Abstract

The time constant of the angular vestibulo-ocular reflex (aVOR), measured from the response to steps of rotation about a yaw axis, has frequently been estimated as a single exponential. However, the slow phase velocity envelope during per- or post-rotatory nystagmus is more accurately represented by two exponential modes. One represents activity in the vestibular nerve induced by deflection of the cupula, the other by activation that the input from the canals produces in the central velocity storage integrator. The sum of the cupula and the integrator responses describes the overall response of slow phase eye velocity and can be approximated by a double exponential. Frequently, there is a plateau in the initial portion of eye velocity response, but this may be masked by habituation, making the cupula contribution unobservable and impossible to estimate. Using a model-based technique to analyze responses with a clear plateau, we estimated peripheral and central vestibular time constants by double exponential fits to slow phase eye velocity. Cupular time constants were varied from 1 to 10 s to identify values that gave optimal fits of the data according to a Chi-square criterion. The mean cupular time constant for 10 human subjects was 4.2 ± 0.6 s. Fits of the data were also good for time constants between 3.5 to 7 s, but not for 1 to 3 or 7.5 to 10 s. The estimated cupular time constants also fit responses where there was no plateau. In 8 monkeys, cupular time constants were estimated as 3.9 ± 0.5 s, which agreed with those derived from activity in the vestibular nerve. There was no difference between monkey and human cupular time constants from these estimates. It is likely that the human cupular time constant is similar to that of the monkey and shorter than previously thought.

Publisher

IOS Press

Subject

Clinical Neurology,Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3