Effect of a False Inertial Cue in the Velocity-Storage Circuit on Head Posture and Inertia Perception

Author:

Choi Jeong-Yoon,Koo Yu Jin,Song Jung-Mi,Kim Hyo-Jung,Kim Ji-Soo

Abstract

The velocity-storage circuit participates in the vestibulopostural reflex, but its role in the postural reflex requires further elucidation. The velocity-storage circuit differentiates gravitoinertial information into gravitational and inertial cues using rotational cues. This implies that a false rotational cue can cause an erroneous estimation of gravity and inertial cues. We hypothesized the velocity-storage circuit is a common gateway for all vestibular reflex pathways and tested that hypothesis by measuring the postural and perceptual responses from a false inertial cue estimated in the velocity-storage circuit. Twenty healthy human participants (40.5 ± 8.2 years old, 6 men) underwent two different sessions of earth-vertical axis rotations at 120°/s for 60 s. During each session, the participants were rotated clockwise and then counterclockwise with two different starting head positions (head-down and head-up). During the first (control) session, the participants kept a steady head position at the end of rotation. During the second (test) session, the participants changed their head position at the end of rotation, from head-down to head-up or vice versa. The head position and inertial motion perception at the end of rotation were aligned with the inertia direction anticipated by the velocity-storage model. The participants showed a significant correlation between postural and perceptual responses. The velocity-storage circuit appears to be a shared neural integrator for the vestibulopostural reflex and vestibular perception. Because the postural responses depended on the inertial direction, the postural instability in vestibular disorders may be the consequence of the vestibulopostural reflex responding to centrally estimated false vestibular cues.SIGNIFICANCE STATEMENTThe velocity-storage circuit appears to participate in the vestibulopostural reflex, which stabilizes the head and body position in space. However, it is still unclear whether the velocity-storage circuit for the postural reflex is in common with that involved in eye movement and perception. We evaluated the postural and perceptual responses to a false inertial cue estimated by the velocity-storage circuit. The postural and perceptual responses were consistent with the inertia direction predicted in the velocity-storage model and were correlated closely with each other. These results show that the velocity-storage circuit is a shared neural integrator for vestibular-driven responses and suggest that the vestibulopostural response to a false vestibular cue is the pathomechanism of postural instability clinically observed in vestibular disorders.

Funder

National Research Foundation of Korea

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overestimation in angular path integration precedes Alzheimer’s dementia;Current Biology;2023-11

2. Vestibular syncope;Current Opinion in Neurology;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3