Pattern recognition for EMG based forearm orientation and contraction in myoelectric prosthetic hand

Author:

Suganthi J. Roselin1,Rajeswari K.2

Affiliation:

1. Department of ECE, K. Ramakrishnan College of Engineering, Tiruchirappalli, Tamil Nadu, India

2. Department of ECE, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

Abstract

Communication is an essential component of human nature. It connects humans, allowing them to learn, grow, col-laborate, and resolve conflicts. Several aspects of human society, relationships, and growth would be significantly hampered in the absence of efficient communication. Hand gesture recognition is a way to interact with technology that can be particularly useful for individuals with disabilities. This hand gesture recognition is mainly employed in sign language translation, healthcare, rehabilitation, prosthesis, and human-computer interaction (HCI). The high degree of dexterity is a main challenge for prosthetic limbs. In order to meet this challenge, hand gesture recognition is employed for the prosthetic limb, which can be used for rehabilitation. The objective of this article is to show the methodology for the recognition of hand gestures using Electromyography (EMG) signals. This article uses the pro-posed time domain feature extraction method called Absolute Fluctuation Analysis (AFA) along with the Root Mean Square (RMS) for the feature extraction method. Along with these feature extraction methods, repeated stratified K-fold cross validation is used for the validation of the classifiers such as the XGB classifier, the K-Nearest Neighbour (KNN) classifier, the Decision Tree classifier, the Random Forest classifier, and the SVM classifier, whose mean recognition accuracy is given by 93.26%, 87.42%, 85.26%, 92.23%, and 91.78%, respectively. The recognition accuracy of machine learning classifiers is being compared with state-of-the-art networks such as artificial neural net-works (ANN), long short-term memory (LSTM), bidirectional LSTM, gated recurrent units (GRU), and convolution-al neural networks (CNN), which provide recognition accuracy of 96.65%, 99.16%, 99.94%, and 99.99%, respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3