Designing and developing a mobile application for indoor real-time positioning and navigation in healthcare facilities

Author:

Luschi Alessio1,Villa Eleonora Annamaria Borsani1,Gherardelli Monica1,Iadanza Ernesto12

Affiliation:

1. Department of Information Engineering, University of Florence, Florence, Italy

2. Department of Medical Biotechnologies, University of Siena, Siena, Italy

Abstract

BACKGROUND: Navigation portable applications have largely grown during the last years. However, the majority of them works just for outdoor positioning and routing, due to their architecture based upon Global Positioning System signals. Real-Time Positioning System intended to provide position estimation inside buildings is known as Indoor Positioning System (IPS). OBJECTIVE: This paper presents an IPS implemented as a mobile application that can guide patients and visitors throughout a healthcare premise. METHODS: The proposed system exploits the geolocation capabilities offered by existing navigation frameworks for determining and displaying the user’s position. A hybrid mobile application architecture has been adopted because it allows to deploy the code to multiple platforms, simplifying maintenance and upgrading. RESULTS: The developed application features two different working modes for on-site and off-site navigation, which offer both the possibility of actual navigation within the hospital, or planning a route from a list of available starting points to the desired target, without being within the navigable area. Tests have been conducted to evaluate the performance and the accuracy of the system. CONCLUSION: The proposed application aims to overcome the limitations of Global Navigation Satellite System by using magnetic fingerprinting in combination with sensor fusion simultaneously. This prevents to rely on a single technology, reducing possible system failures and increasing the scalability.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3