Molecular Docking and Network Pharmacology Interaction Analysis of Gingko Biloba (EGB761) Extract with Dual Target Inhibitory Mechanism in Alzheimer’s Disease

Author:

Singh Manisha12,Jindal Divya1,Kumar Rupesh1,Pancham Pranav1,Haider Shazia1,Gupta Vivek3,Mani Shalini1,R Rachana1,Tiwari Raj Kumar4,Chanda Silpi5

Affiliation:

1. Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India

2. Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia

3. Macquarie Medical School, Macquarie University, Sydney, Australia

4. Department of Pharmacognosy, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India

5. Department of Pharmacognosy, Amity Institute of Pharmacy, Lucknow, Amity University, UttarPradesh, Noida, India

Abstract

Background: Alzheimer’s disease (AD) is the most common type of neurodegenerative dementia affecting people in their later years of life. The AD prevalence rate has significantly increased due to a lack of early detection technology and low therapeutic efficacy. Despite recent scientific advances, some aspects of AD pathological targets still require special attention. Certain traditionally consumed phytocompounds have been used for thousands of years to treat such pathologies. The standard extract of Gingko biloba (EGB761) is a combination of 13 macro phyto-compounds and various other micro phytocompounds that have shown greater therapeutic potential against the pathology of AD. Objective: Strong physiological evidence of cognitive health preservation has been observed in elderly people who keep an active lifestyle. According to some theories, consuming certain medicinal extracts helps build cognitive reserve. We outline the research employing EGB761 as a dual target for AD. Methods: This study investigates various inhibitory targets against AD using computational approaches such as molecular docking, network pharmacology, ADMET (full form), and bioactivity prediction of the selected compounds. Results: After interaction studies were done for all the phytoconstituents of EGB761, it was concluded that all four of the phytocompounds (kaempferol, isorhamnetin, quercetin, and ginkgotoxin) showed the maximum inhibitory activity against acetylcholinesterase (AChE) and GSK3β. Conclusion: The highly active phytocompounds of EGB761, especially quercetin, kaempferol, and isorhamnetin, have better activity against AChE and GSK3β than its reported synthetic drug, according to molecular docking and network pharmacology research. These compounds may act on multiple targets in the protein network of AD. The AChE theory was primarily responsible for EGB761’s therapeutic efficacy in treating AD.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3