Smoothly clipped absolute deviation estimation for uncertain autoregressive model

Author:

Li Haiyan1,Yang Xiangfeng2

Affiliation:

1. School of Economics, Nankai University, Tianjin, China

2. School of Information Technology and Management, University of International Business and Economics, Beijing, China

Abstract

Uncertain time series is chronological sequence overtime where each period is described by an uncertain variable. In this paper, we investigate the smoothly clipped absolute deviation (SCAD) penalized estimation method to determine the unknown parameters in the uncertain autoregressive model, and the autoregressive model order can be simultaneously obtained for a pre-given thresholding parameter λ. Besides, an iterative algorithm based on local quadratic approximations for finding the penalized estimators is provided. Based on the fitted autoregressive model, the forecast value and the future value’s confidence interval are given. Besides, the sum of the squared error approach to select the optimal λ is discussed. Finally, some examples are used to validate the effectiveness of the proposed method by the comparative analysis.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference23 articles.

1. ARMA model order determination using edge detection: A new perspective;Al-Smadi;Circuits, Systems and Signal Processing,2005

2. Liu B. , Uncertain Theory, 2nd edn, Springer-Verlag, Berlin, 2007.

3. Ridge estimation for uncertain autoregressive model with Imprecise observations;Chen;International Journal of Uncertainty, Fuzziness and Knowledge-based Systems,2021

4. Maximum likelihood estimation for uncertain autoregressive model with application to carbon dioxide emissions;Chen;Journal of Intelligent & Fuzzy Systems,2021

5. Applications of least squares regression to relationships containing autocorrelated errors;Cochrane;Journal of American Statistical Association,1949

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3