Maximum likelihood estimation for uncertain autoregressive model with application to carbon dioxide emissions

Author:

Chen Dan1,Yang Xiangfeng2

Affiliation:

1. Department of Mathematical Sciences, Tsinghua University, Beijing, China

2. School of Information Technology and Management, University of InternationalBusiness and Economics, Beijing, China

Abstract

The objective of uncertain time series analysis is to explore the relationship between the imprecise observation data over time and to predict future values, where these data are uncertain variables in the sense of uncertainty theory. In this paper, the method of maximum likelihood is used to estimate the unknown parameters in the uncertain autoregressive model, and the unknown parameters of uncertainty distributions of the disturbance terms are simultaneously obtained. Based on the fitted autoregressive model, the forecast value and confidence interval of the future data are derived. Besides, the mean squared error is proposed to measure the goodness of fit among different estimation methods, and an algorithm is introduced. Finally, the comparative analysis of the least squares, least absolute deviations, and maximum likelihood estimations are given, and two examples are presented to verify the feasibility of this approach.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference17 articles.

1. Liu B. , Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, (2010).

2. Least absolute deviations for uncertain multivariate regression model;Zhang;International Journal of General Systems,2020

3. Tukey’s biweight estimation for uncertain regression model with imprecise observations;Chen;Soft Computing,2020

4. Uncertain vector autoregressive model with imprecise observations;Tang;Soft Computing,2020

5. Uncertain regression analysis: An approach for imprecise observations;Yao;Soft Computing,2018

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3