Robust configuration and intelligent MPPT control for building integrated photovoltaic system based on extreme learning machine

Author:

An Qing1,Tang Ruoli2,Su Hongfeng3,Zhang Jun4,Li Xin2

Affiliation:

1. School of Artificial Intelligence, Wuchang University of Technology, Wuhan, China

2. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, China

3. Sichuan Vocational and Technical College of Communications, Chengdu, China

4. Zhejiang Electronic Information Products Inspection and Research Institute (Key Laboratory of Information Security of Zhejiang Province)

Abstract

Due to the promising performance on energy-saving, the building integrated photovoltaic system (BIPV) has found an increasingly wide utilization in modern cities. For a large-scale PV array installed on the facades of a super high-rise building, the environmental conditions (e.g., the irradiance, temperature, sunlight angle etc.) are always complex and dynamic. As a result, the PV configuration and maximum power point tracking (MPPT) methodology are of great importance for both the operational safety and efficiency. In this study, some famous PV configurations are comprehensively tested under complex shading conditions in BIPV application, and a robust configuration for large-scale BIPV system based on the total-cross-tied (TCT) circuit connection is developed. Then, by analyzing and extracting the feature variables of environment parameters, a novel fast MPPT methodology based on extreme learning machine (ELM) is proposed. Finally, the proposed configuration and its MPPT methodology are verified by simulation experiments. Experimental results show that the proposed configuration performs efficient on most of the complex shading conditions, and the ELM-based intelligent MPPT methodology can also obtain promising performance on response speed and tracking accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3