Affiliation:
1. School of Artificial Intelligence, Wuchang University of Technology, Wuhan, China
Abstract
Due to the corrosion and aging caused by the special oceanic environment, the characteristic of coastal photovoltaic (PV) system significantly drift after years of operation. In this study, the maximum power point tracking (MPPT) problem for coastal PV system is addressed and a novel MPPT methodology based on deep neural network (DNN) integrated with the corrosion evaluation index (CE-index) and dynamic training-sample (DTS) mechanism is developed. To be specific, the detailed effect of corrosion and aging for the PV modules installed in coastal areas is comprehensively analysed, and a composite indicator for evaluating the PV parameter drift, namely CE-index, is proposed. Then, a novel DNN-based offline MPPT methodology for the large-scale coastal PV system is developed, in which the DTS mechanism is also introduced for overcoming the effect caused by PV module corrosion and aging phenomenon. Finally, the optimal length of DTS for different degrees of CE-index is comprehensively verified by case studies. Experimental result shows that the developed DNN-based MPPT methodology can accurately forecast the maximum power point (MPP) voltage for large-scale coastal PV-system with robust performance, and cooperation of the developed DTS-mechanism and CE-index corrosion evaluation strategy can also effectively overcome the disturbance caused by the harsh oceanic environment.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability