Mirror motion recognition method about upper limb rehabilitation robot based on sEMG

Author:

Li Lin

Abstract

A novel method of mirror motion recognition by rehabilitation robot with multi-channels sEMG signals is proposed, aiming to help the stroked patients to complete rehabilitation training movement. Firstly the bilateral mirror training is used and the model of muscle synergy with basic sEMG signals is established. Secondly, the constrained L1/2-NMF is used to extracted the main sEMG signals information which can also reduce the limb movement characteristics. Finally the relationship between sEMG signal characteristics and upper limb movement is described by TSSVD-ELM and it is applied to improve the model stability. The validity and feasibility of the proposed strategy are verified by the experiments in this paper, and the rehabilitation robot can move with the mirror upper limb. By comparing the method proposed in this paper with PCA and full-action feature extraction, it is confirmed that convergence speed is faster; the feature extraction accuracy is higher which can be used in rehabilitation robot systems.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference24 articles.

1. Adaptive interaction control for lower limb rehabilitation robots;Du;Acta Automatica Sinica,2018

2. Approach to the segmentation of sEMG data based on the activation and deactivation of muscle synergies during movement;Álvaro;IEEE Robotics and Automation Letters,2018

3. Physical interaction methods for rehabilitation and assistive robots;Peng;Acta Automatica Sinica,2018

4. Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications;Ishak;Medical & Biological Engineering & Computing,2017

5. Master-slave upper-limb exoskeletion rehabilitation robot training control method based on fuzzy compensation;Zhang;Robot,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3