Recognition of Hitting Action in Cyclic Anaerobic Volleyball by Acute Cooling Based on Improved Spatiotemporal Graph Convolutional Network

Author:

Zhang Jinwen1ORCID,Shen Tianxing2

Affiliation:

1. Ministry of Sports, Nanjing University of Information Science and Technology, Nanjing, 210014 Jiangsu, China

2. Sports Institute, Nanchang University, Nanchang, 330031 Jiangxi, China

Abstract

Action recognition is the basis of intelligent sports training and has a unique role in improving athletes’ sports training ability. Traditional motion recognition cannot accurately identify changes in human skeletal motion, and the generalization ability is weak, which cannot meet the needs of modern sports. This paper is aimed at studying a new method of human motion recognition and better realizing the intelligent development of the Institute of Physical Education. This paper proposes an improved recognition mode of spatiotemporal graph convolutional network, builds a human skeleton feature recognition model, learns the changes of human skeleton motion, and masters the laws of human skeleton motion changes. This paper comprehensively compares the differences of action recognition of several different algorithms and proves the superiority of this method. Afterwards, a comprehensive comparison of 2D and 3D information data and a comparison of whole body and local action recognition methods were conducted to investigate the experience of athletes and trainers. The experimental results of this paper show that the spatiotemporal graph convolutional network can better realize the recognition of motion features, improve the sports training ability of athletes by 20%, and promote the development of sports.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3