A new real-time image semantic segmentation framework based on a lightweight deep convolutional encoder-decoder architecture for robotic environment sensing

Author:

Yuan Yuxia1,Zhang Yachao1

Affiliation:

1. School of Electronic and Electrical Engineering, Zhengzhou University of Science and Technology, Zhengzhou, China

Abstract

Background: Image semantic segmentation can be understood as the allocation of a predefined category label to each pixel in the image to achieve the region segmentation of the image. Different categories in the image are identified with different colors. While achieving pixel classification, the position information of pixel points of different categories in the image is retained. Purpose: Due to the influence of background and complex environment, the traditional semantic segmentation methods have low accuracy. To alleviate the above problems, this paper proposes a new real-time image semantic segmentation framework based on a lightweight deep convolutional encoder-decoder architecture for robotic environment sensing. Methodology: This new framework is divided into three stages: encoding stage, decoding stage and dimension reduction stage. In the coding stage, a cross-layer feature map fusion (CLFMF) method is proposed to improve the effect of feature extraction. In the decoding stage, a new lightweight decoder (LD) structure is designed to reduce the number of convolutional layers to speed up model training and prediction. In the dimension reduction stage, the convolution dimension reduction method (CDR) is presented to connect the encoder and decoder layer by layer to enhance the decoder effect. Results: Compared with other state-of-the-art image semantic segmentation methods, we conduct comparison experiments on datasets Cityscapes, SUN RGB-D, CamVid, KITTI. The Category iIoU combined with the proposed method is more than 70%, and the Category IoU is as high as 89.7%. Conclusion: The results reflect that the new method can achieve the better semantic segmentation effect.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3