Normalization and deep learning based attention deficit hyperactivity disorder classification

Author:

Preetha P.1,Mallika R.2

Affiliation:

1. Research & Development Centre, Bharathiar University, Coimbatore, India

2. Department of Computer Science, CBM College, Coimbatore, India

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is one of the major mental-health disorders worldwide. ADHD is typically characterized by impaired executive function, impulsivity, hyperactivity and with respect to these behavioral symptoms, diagnosis of ADHD is performed. These symptoms are obviously seen at in early stage. Serious impairments and substantial burdens are induced for society as well as to families. However, for ADHD, there is no diagnostic laboratory in current scenario. Psychological tests like Brown Attention Deficit Disorder Scale (BADDS), Conners Parent Rating Scale and ADHD Rating Scale (ADHD-RS) are carried out for ADHD diagnosis. Tedious and complex clinical analysis are needed in this testing and this makes low efficiency of the diagnostic process. A traditional diagnosis technique of ADHD produces degraded results. So, enhanced extreme learning machine is incorporated with existing techniques for avoiding the issues of performance degradation. There is a need to enhance the classifier performance further and there is a chance for unwanted noise in input samples, which may degrade the performance of classifier. For avoiding these issues, an enhanced and automated ADHS diagnosis technique is proposed. First stage is pre-processing, and it is carried out based on min max normalization and feature extraction is a next stage, which is carried out through Fast Independent Component Analysis and third stage is a Deep Extreme Learning Machine (DELM) based ADHD identification and classification. Extreme Learning Machine with Kernel (KELM) and Multilayer Extreme Learning Machine (MLELM) algorithm are combined in this method and it is termed as deep extreme learning machine (DELM). Collection of neuro images are used for quantitative and qualitative analysis and with respect to f-measure, recall, precision and accuracy, robustness of proposed technique is demonstrated.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3