Application of Deep Convolutional Neural Networks in Attention-Deficit/Hyperactivity Disorder Classification: Data Augmentation and Convolutional Neural Network Transfer Learning

Author:

Zhu Li,Chang Weike

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common and controversial diseases in paediatric psychiatry. Recently, computer-aided diagnosis methods become increasingly popular in clinical diagnosis of ADHD. In this paper, we introduced the latest powerful method—deep convolutional neural networks (CNNs). Some data augmentation methods and CNN transfer learning technique were used to address the application problem of deep CNNs in the ADHD classification task, given the limited annotated data. In addition, we previously encoded all gray-scale images into 3-channel images via two image enhancement methods to leverage the pre-trained CNN models designed for 3-channel images. All CNN models were evaluated on the published testing dataset from the ADHD-200 sample. Evaluation results show that our proposed deep CNN method achieves a state-of-the-art accuracy of 66.67% by using data augmentation methods and CNN transfer learning technique, and outperforms existing methods in the literature. The result can be improved by building a special CNN structure. Furthermore, the trained deep CNN model can be used to clinically diagnose ADHD in real-time. We suggest that the use of CNN transfer learning and data augmentation will be an effective solution in the application problem of deep CNNs in medical image analysis.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3