Deep Neural Network Driven Speech Classification for Relevance Detection in Automatic Medical Documentation

Author:

Ahamed Suhail1,Weiler Gabriele1,Boden Karl23,Januschowski Kai23,Stennes Matthias4,McCrae Patrick5,Bock Cornelia5,Rawein Carina5,Petris Marco5,Foth Kilian5,Rohm Kerstin1,Kiefer Stephan1

Affiliation:

1. Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany

2. Klaus Heimann Eye Research Institute (KHERI), Sulzbach, Germany

3. Eye Clinic Sulzbach, Knappschaftsklinikum Saar, Sulzbach, Germany

4. Fraunhofer Institute for Digital Media Technology, Oldenburg, Germany

5. LangTec, Hamburg, Germany

Abstract

The automation of medical documentation is a highly desirable process, especially as it could avert significant temporal and monetary expenses in healthcare. With the help of complex modelling and high computational capability, Automatic Speech Recognition (ASR) and deep learning have made several promising attempts to this end. However, a factor that significantly determines the efficiency of these systems is the volume of speech that is processed in each medical examination. In the course of this study, we found that over half of the speech, recorded during follow-up examinations of patients treated with Intra-Vitreal Injections, was not relevant for medical documentation. In this paper, we evaluate the application of Convolutional and Long Short-Term Memory (LSTM) neural networks for the development of a speech classification module aimed at identifying speech relevant for medical report generation. In this regard, various topology parameters are tested and the effect of the model performance on different speaker attributes is analyzed. The results indicate that Convolutional Neural Networks (CNNs) are more successful than LSTM networks, and achieve a validation accuracy of 92.41%. Furthermore, on evaluation of the robustness of the model to gender, accent and unknown speakers, the neural network generalized satisfactorily.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic documentation of professional health interactions: A systematic review;Artificial Intelligence in Medicine;2023-03

2. Deep Learning-Based Classification of Spoken English Digits;Computational Intelligence and Neuroscience;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3