Affiliation:
1. School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
Abstract
Classification of isolated digits is the basic challenge for many speech classification systems. While a lot of work has been carried out on spoken languages, only limited research work on spoken English digit data has been reported in the literature. The paper proposes an intelligent-based system based on deep feedforward neural network (DFNN) with hyperparameter optimization techniques, an ensemble method; random forest (RF), and a regression method; gradient boosting (GB) for the classification of spoken digit data. The paper investigates different machine learning (ML) algorithms to determine the best method for the classification of spoken English digit data. The DFNN classifier outperformed the RF and GB classifiers on the public benchmark spoken English digit data and achieved 99.65% validation accuracy. The outcome of the proposed model performs better compared to existing models with only traditional classifiers.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献