Amharic spoken digits recognition using convolutional neural network

Author:

Ayall Tewodros Alemu,Zhou Changjun,Liu Huawen,Brhanemeskel Getnet Mezgebu,Abate Solomon Teferra,Adjeisah Michael

Abstract

AbstractSpoken digits recognition (SDR) is a type of supervised automatic speech recognition, which is required in various human–machine interaction applications. It is utilized in phone-based services like dialing systems, certain bank operations, airline reservation systems, and price extraction. However, the design of SDR is a challenging task that requires the development of labeled audio data, the proper choice of feature extraction method, and the development of the best performing model. Even if several works have been done for various languages, such as English, Arabic, Urdu, etc., there is no developed Amharic spoken digits dataset (AmSDD) to build Amharic spoken digits recognition (AmSDR) model for the Amharic language, which is the official working language of the government of Ethiopia. Therefore, in this study, we developed a new AmSDD that contains 12,000 utterances of 0 (Zaero) to 9 (zet’enyi) digits which were recorded from 120 volunteer speakers of different age groups, genders, and dialects who repeated each digit ten times. Mel frequency cepstral coefficients (MFCCs) and Mel-Spectrogram feature extraction methods were used to extract trainable features from the speech signal. We conducted different experiments on the development of the AmSDR model using the AmSDD and classical supervised learning algorithms such as Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Random Forest (RF) as the baseline. To further improve the performance recognition of AmSDR, we propose a three layers Convolutional Neural Network (CNN) architecture with Batch normalization. The results of our experiments show that the proposed CNN model outperforms the baseline algorithms and scores an accuracy of 99% and 98% using MFCCs and Mel-Spectrogram features, respectively.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3