Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior

Author:

Antontsev S.12,de Oliveira H.B.13,Khompysh Kh.4

Affiliation:

1. CMAFCIO, Universidade de Lisboa, Portugal

2. Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia. E-mail: antontsevsn@mail.ru

3. FCT, Universidade do Algarve, Portugal. E-mail: holivei@ualg.pt

4. Al-Farabi Kazakh National University, Kazakhstan. E-mail: konat_k@mail.ru

Abstract

A nonlinear initial and boundary-value problem for the Kelvin–Voigt equations with anisotropic diffusion, relaxation and absorption/damping terms is considered in this work. The global and local unique solvability of the problem was established in (J. Math. Anal. Appl. 473(2) (2019) 1122–1154). In the present work, we show how all the anisotropic exponents of nonlinearity and all anisotropic coefficients should interact with the problem data for the solutions of this problem display exponential and polynomial time-decays. We also establish the conditions for the solutions of this problem to blow-up in a finite time in three different cases: problem without convection, full anisotropic problem, and the problem with isotropic relaxation.

Publisher

IOS Press

Subject

General Mathematics

Reference33 articles.

1. The Navier–Stokes problem modified by an absorption term;Antontsev;Appl. Anal.,2010

2. Analysis of the existence for the steady Navier–Stokes equations with anisotropic diffusion;Antontsev;Adv. Differential Equations,2014

3. Evolution problems of Navier–Stokes type with anisotropic diffusion;Antontsev;Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., RACSAM,2016

4. Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping;Antontsev;J. Math. Anal. Appl.,2019

5. Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem;Antontsev;J. Math. Fluid Mech.,2000

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On an inverse problem for a linearized system of Navier–Stokes equations with a final overdetermination condition;Journal of Inverse and Ill-posed Problems;2023-06-01

2. Inverse problem for integro-differential Kelvin–Voigt equations;Journal of Inverse and Ill-posed Problems;2022-11-24

3. Cauchy problem for the Navier–Stokes–Voigt model governing nonhomogeneous flows;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2022-07-28

4. An initial boundary value problem for a pseudoparabolic equation with a nonlinear boundary condition;Mathematical Methods in the Applied Sciences;2022-07-15

5. Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping;Nonlinear Differential Equations and Applications NoDEA;2022-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3