1. Amrouche, C., Berselli, L.C., Lewandowski, R., Duong, N.D.: Turbulent flows as generalized Kelvin–Voigt materials: modeling and analysis. Nonlinear Anal. 196, 111790 (2020)
2. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary value problems in mechanics of nonhomogeneous fluids. (Translation from the original Russian edition, Nauka, Novosibirsk, 1983), North-Holland, Amsterdam, (1990)
3. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: The classical Kelvin–Voigt problem for nonhomogeneous and incompressible fluids: existence, uniqueness and regularity. Nonlinearity 34(5), 3083–3111 (2021)
4. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping. J. Math. Anal. Appl. 473, 1122–1154 (2019)
5. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Kelvin–Voigt equations with anisotropic diffusion, relaxation, and damping: blow-up and large time behavior. J. Asymptot. Anal. 121(2), 125–157 (2021)