Measuring data drift with the unstable population indicator1

Author:

Haas Marcel R.1ORCID,Sibbald Lisette2ORCID

Affiliation:

1. Public Health and Primary Care, Leiden University Medical Center, Albinusdreef 2, The Netherlands and Business Intelligence, University of Amsterdam, Spui 21, 1012WX Amsterdam, The Netherlands

2. Department of Methodology and Statistics, Tilburg University, Prof. Cobbenhagenlaan 125, 5037 DB Tilburg, The Netherlands and Department of Cognitive Neuropsychology, Tilburg University, Prof. Cobbenhagenlaan 125, 5037 DB Tilburg, The Netherlands and Business Intelligence, University of Amsterdam, Spui 21, 1012WX Amsterdam, The Netherlands

Abstract

Measuring data drift is essential in machine learning applications where model scoring (evaluation) is done on data samples that differ from those used in training. The Kullback-Leibler divergence is a common measure of shifted probability distributions, for which discretized versions are invented to deal with binned or categorical data. We present the Unstable Population Indicator, a robust, flexible and numerically stable, discretized implementation of Jeffrey’s divergence, along with an implementation in a Python package that can deal with continuous, discrete, ordinal and nominal data in a variety of popular data types. We show the numerical and statistical properties in controlled experiments. It is not advised to employ a common cut-off to distinguish stable from unstable populations, but rather to let that cut-off depend on the use case.

Publisher

IOS Press

Reference20 articles.

1. Dataset shift assessment measures in monitoring predictive models

2. Survey of distance measures for quantifying concept drift and shift in numeric data

3. Array programming with NumPy;Harris;Nature,2020

4. Matplotlib: A 2D graphics environment;Hunter;Computing in Science & Engineering,2007

5. M. Kull and P.A. Flach, Patterns of dataset shift, in: Learning over Multiple Contexts, at ECML 2014, 2014. https://www.semanticscholar.org/paper/Patterns-of-dataset-shift-Kull-Flach/aa49eb379d55fd4c923f47efcd61b2090f58e54f.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the evaluation of synthetic longitudinal electronic health records;BMC Medical Research Methodology;2024-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3