Revisiting block deordering in finite-domain state variable planning

Author:

Noor Sabah Binte1,Siddiqui Fazlul Hasan1

Affiliation:

1. Department of Computer Science and Engineering, Dhaka University of Engineering & Technology, Gazipur-1707, Bangladesh

Abstract

Plan deordering removes unnecessary ordering constraints between actions in a plan, facilitating plan execution flexibility and several other tasks, such as plan reuse, modification, and decomposition. Block deordering is a variant of plan deordering that encapsulates coherent actions into blocks to eliminate further ordering constraints from a partial-order plan (POP) and is useful in many applications (e.g., generating macro-actions and improving the overall plan quality). The existing block deordering strategy is formulated in propositional encodings. Finite-domain state variable encodings (e.g., SAS+ representation), in contrast with propositional encodings, can capture the internal structure and the behavior of state variables of a planning instance through concise constructs such as causal graphs (CGs) and domain transition graphs (DTGs). This work redefines the semantics of block deordering terminologies and related plan deordering concepts in finite domain representation (FDR). Our proposed semantics also resolves some limitations of the existing block semantics and further enhance plan flexibility. In addition, this work exploits block deordering to eliminate redundant actions from a POP. A comparative analysis is also performed on block deordering with various deordering/reordering techniques using explanation-based order generalization (EOG) and MaxSAT. Our experiments on the benchmark problems from International Planning Competitions (IPC) show that our FDR formalism of block deordering significantly improves the plan execution flexibility while maintaining good coverage and execution time.

Publisher

IOS Press

Reference59 articles.

1. SHOP2: An HTN planning system;Au;Journal of Artificial Intelligence Research,2003

2. Computational aspects of reordering plans;Bäckström;Journal of Artificial Intelligence Research,1998

3. An Admissible HTN Planning Heuristic

4. A. Bit-Monnot, D.E. Smith and M. Do, Delete-free reachability analysis for temporal and hierarchical planning, in: ICAPS Workshop on Heuristics and Search for Domain-Independent Planning (HSDIP), London, United Kingdom, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3