Computational Aspects of Reordering Plans

Author:

Backstrom C.

Abstract

This article studies the problem of modifying the action ordering of a plan in order to optimise the plan according to various criteria. One of these criteria is to make a plan less constrained and the other is to minimize its parallel execution time. Three candidate definitions are proposed for the first of these criteria, constituting a sequence of increasing optimality guarantees. Two of these are based on deordering plans, which means that ordering relations may only be removed, not added, while the third one uses reordering, where arbitrary modifications to the ordering are allowed. It is shown that only the weakest one of the three criteria is tractable to achieve, the other two being NP-hard and even difficult to approximate. Similarly, optimising the parallel execution time of a plan is studied both for deordering and reordering of plans. In the general case, both of these computations are NP-hard. However, it is shown that optimal deorderings can be computed in polynomial time for a class of planning languages based on the notions of producers, consumers and threats, which includes most of the commonly used planning languages. Computing optimal reorderings can potentially lead to even faster parallel executions, but this problem remains NP-hard and difficult to approximate even under quite severe restrictions.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting block deordering in finite-domain state variable planning;AI Communications;2024-04-03

2. Efficient HTN to STRIPS Encodings for Concurrent Planning;2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI);2023-11-06

3. On transformation of conditional, conformant and parallel planning to linear programming;Archives of Control Sciences;2023-07-26

4. Plan Deordering with Conditional Effects;Lecture Notes in Networks and Systems;2022-09-01

5. An Introduction to the Planning Domain Definition Language;Synthesis Lectures on Artificial Intelligence and Machine Learning;2019-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3