Current development status of iBNCT001, demonstrator of a LINAC-based neutron source for BNCT

Author:

Kumada Hiroaki1,Li Yinuo1,Yasuoka Kiyoshi1,Naito Fujio2,Kurihara Toshikazu2,Sugimura Takashi2,Sato Masaharu2,Matsumoto Yoshitaka1,Matsumura Akira1,Sakurai Hideki1,Sakae Takeji1

Affiliation:

1. Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan

2. High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan

Abstract

The iBNCT project aims to develop “iBNCT001,” a demonstration device of the linac-based neutron irradiation facility for boron neutron capture therapy (BNCT) application. iBNCT001 generates an epithermal neutron beam by irradiating 8 MeV protons accelerated by a linac onto a beryllium target. Currently, the linac can drive an average proton current of 2.1 mA. Several experiments were performed using a water phantom to confirm the main physical characteristics of the neutron beam produced at the irradiation position. The measurement results demonstrated that the maximum thermal neutron flux achievable in the phantom volume was approximately 1.36 × 10 9  cm − 2  s − 1 when a normal beam collimator with a 120 mm diameter was used. This neutron beam intensity was sufficient to complete the irradiation within 30 min using the BNCT approach. In addition to normal beam collimators, extended collimators that protrude 100 mm from the wall were developed. By using an extended collimator, it is possible to prevent interference of the patient’s body with the wall when irradiating head and neck cancers. The measurement results for the extended collimator demonstrated that irradiation with the collimator could be completed within 1 h when the neutron beam is generated with an average proton current of 2.1 mA.

Publisher

IOS Press

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3