IsaNet: A framework for verifying secure data plane protocols

Author:

Klenze Tobias1,Sprenger Christoph1,Basin David1

Affiliation:

1. Department of Computer Science, ETH Zurich, Switzerland

Abstract

Today’s Internet is built on decades-old networking protocols that lack scalability, reliability and security. In response, the networking community has developed path-aware Internet architectures that solve these problems while simultaneously empowering end hosts to exert some control on their packets’ route through the network. In these architectures, autonomous systems authorize forwarding paths in accordance with their routing policies, and protect these paths using cryptographic authenticators. For each packet, the sending end host selects an authorized path and embeds it and its authenticators in the packet header. This allows routers to efficiently determine how to forward the packet. The central security property of the data plane, i.e., of forwarding, is that packets can only travel along authorized paths. This property, which we call path authorization, protects the routing policies of autonomous systems from malicious senders. The fundamental role of packet forwarding in the Internet’s ecosystem and the complexity of the authentication mechanisms employed call for a formal analysis. We develop IsaNet, a parameterized verification framework for data plane protocols in Isabelle/HOL. We first formulate an abstract model without an attacker for which we prove path authorization. We then refine this model by introducing a Dolev–Yao attacker and by protecting authorized paths using (generic) cryptographic validation fields. This model is parametrized by the path authorization mechanism and assumes five simple verification conditions. We propose novel attacker models and different sets of assumptions on the underlying routing protocol. We validate our framework by instantiating it with nine concrete protocols variants and prove that they each satisfy the verification conditions (and hence path authorization). The invariants needed for the security proof are proven in the parametrized model instead of the instance models. Our framework thus supports low-effort security proofs for data plane protocols. In contrast to what could be achieved with state-of-the-art automated protocol verifiers, our results hold for arbitrary network topologies and sets of authorized paths.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IsaNet: A framework for verifying secure data plane protocols;Journal of Computer Security;2022-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3