Nomogram for Early Prediction of Parkinson’s Disease Based on microRNA Profiles and Clinical Variables

Author:

Hou Xiangqing1,Wong Garry1

Affiliation:

1. Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau S.A.R., China

Abstract

Background: Few efficient and simple models for the early prediction of Parkinson’s disease (PD) exists. Objective: To develop and validate a novel nomogram for early identification of PD by incorporating microRNA (miRNA) expression profiles and clinical indicators. Methods: Expression levels of blood-based miRNAs and clinical variables from 1,284 individuals were downloaded from the Parkinson’s Progression Marker Initiative database on June 1, 2022. Initially, the generalized estimating equation was used to screen candidate biomarkers of PD progression in the discovery phase. Then, the elastic net model was utilized for variable selection and a logistics regression model was constructed to establish a nomogram. Additionally, the receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves were utilized to evaluate the performance of the nomogram. Results: An accurate and externally validated nomogram was constructed for predicting prodromal and early PD. The nomogram is easy to utilize in a clinical setting since it consists of age, gender, education level, and transcriptional score (calculated by 10 miRNA profiles). Compared with the independent clinical model or 10 miRNA panel separately, the nomogram was reliable and satisfactory because the area under the ROC curve achieved 0.72 (95% confidence interval, 0.68-0.77) and obtained a superior clinical net benefit in DCA based on external datasets. Moreover, calibration curves also revealed its excellent prediction power. Conclusion: The constructed nomogram has potential for large-scale early screening of PD based upon its utility and precision.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3