A new semi-supervised algorithm combined with MCICA optimizing SVM for motion imagination EEG classification

Author:

Tan Xuemin1,Guo Chao2,Jiang Tao1,Fu Kechang1,Zhou Nan1,Yuan Jianying1,Zhang Guoliang1

Affiliation:

1. College of Control Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, China

2. State Grid Chengdu Power Supply Company, Chengdu, Sichuan, China

Abstract

This paper proposed a new semi-supervised algorithm combined with Mutual-cross Imperial Competition Algorithm (MCICA) optimizing Support Vector Machine (SVM) for motion imagination EEG classification, which not only reduces the tedious and time-consuming training process and enhances the adaptability of Brain Computer Interface (BCI), but also utilizes the MCICA to optimize the parameters of SVM in the semi-supervised process. This algorithm combines mutual information and cross validation to construct objective function in the semi-supervised training process, and uses the constructed objective function to establish the semi-supervised model of MCICA for optimizing the parameters of SVM, and finally applies the selected optimal parameters to the data set Iva of 2005 BCI competition to verify its effectiveness. The results showed that the proposed algorithm is effective in optimizing parameters and has good robustness and generalization in solving small sample classification problems.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3