Intelligent fault diagnosis using image representation of multi-domain features
Author:
Affiliation:
1. Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
2. Australian Maritime College, University of Tasmania, Launceston, Australia
3. College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing
Abstract
Publisher
IOS Press
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Reference29 articles.
1. A novel feature extraction algorithm for bearing fault diagnosis based on enhanced symbolic aggregate approximation[J];Zhang;Journal of Intelligent & Fuzzy Systems,2019
2. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump[J];Zhang;Mechanical Systems and Signal Processing,2017
3. Multi-layer domain adaptation method for rolling bearing fault diagnosis[J];Li;Signal Processing,2019
4. Artificial intelligence for fault diagnosis of rotating machinery: A review[J];Liu;Mechanical Systems and Signal Processing,2018
5. A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing[J];Caesarendra;Machines,2017
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Delay-and-Sum Beamforming-Based Spatial Mapping for Multisource Sound Localization;IEEE Internet of Things Journal;2024-05-01
2. Wavelet Packet Transform and Deep Learning-based Fusion of Audio-Visual Signals: A Novel Approach for Enhancing Laser Cleaning Effect Evaluation;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-02-01
3. A new bearing fault diagnosis method based on improved weighted multi-scale morphological filter and multi-headed self-attention capsule restricted boltzmann network;Journal of Intelligent & Fuzzy Systems;2023-12-02
4. Tool wear monitoring using a novel parallel BiLSTM model with multi-domain features for robotic milling Al7050-T7451 workpiece;The International Journal of Advanced Manufacturing Technology;2023-09-27
5. An improved BRB-based anomaly detection method of drive end bearings;Journal of Intelligent & Fuzzy Systems;2023-06-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3