Intelligent fault diagnosis using image representation of multi-domain features

Author:

Zhang Yulong123,Zhang Chaofei3,Tan Jian3,Lim Frank3,Duan Menglan3

Affiliation:

1. Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

2. Australian Maritime College, University of Tasmania, Launceston, Australia

3. College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing

Abstract

Deep learning (DL) algorithms, especially the convolutional neural network (CNN), have been proven as a newly developed tool in machinery intelligent diagnosis. However, the current CNN-based fault diagnosis studies usually consider features or images extracted from a single domain as model input. This single domain information may not reflect fault patterns comprehensively, leading to low modeling accuracy and inaccurate diagnostic results. To overcome this limitation, this paper proposes a new CNN-based fault diagnosis approach using image representation considering multi-domain features of vibration signals. First, multi-domain features of vibration signals are extracted. These extracted features are then used to construct a n × n matrix, and subsequently to form images by RGB color transformations. This image transformation technique allows for capturing complementary and rich diagnostic information from multiple domains. At last, these images associated with different mechanical defects are fed into a CNN model that is improved based on the classic LeNet-5 CNN architecture for fault diagnosis and identification. Comparative experiments with the traditional feature extraction methods as well as state-of-the-art CNN-based methods are also investigated. Experimental studies on rolling bearings validate the effectiveness and superiorities of the proposed approach.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3