1. Comparison of supervised, semi-supervised and unsupervised learning methods in network intrusion detection system (NIDS) application;Arunraj;AKWI,2017
2. H. Attak, M. Combalia, G. Gardikis, B. Gastón, L. Jacquin, D. Katsianis, A. Litke, N. Papadakis, D. Papadopoulos, A. Pastor, M. Roig and O. Segou, Application of distributed computing and machine learning technologies to cybersecurity, in: Computer & Electronics Security Applications Rendez-vous (C&ESAR), 19–21 November 2018, Rennes, France, 2018, pp. 1–16.
3. Network Anomaly Detection with Stochastically Improved Autoencoder Based Models
4. Learning deep architectures for AI;Bengio;Foundations and Trends in Machine Learning,2009
5. Network anomaly detection: Methods, systems and tools;Bhuyan;IEEE Communications Surveys & Tutorials,2014