Recursive Support Vector Machine Biomarker Selection for Alzheimer’s Disease

Author:

Zhang Fan12,Petersen Melissa12,Johnson Leigh1,Hall James1,O’Bryant Sid E.1

Affiliation:

1. Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA

2. Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA

Abstract

Background: There is a need for more reliable diagnostic tools for the early detection of Alzheimer’s disease (AD). This can be a challenge due to a number of factors and logistics making machine learning a viable option. Objective: In this paper, we present on a Support Vector Machine Leave-One-Out Recursive Feature Elimination and Cross Validation (SVM-RFE-LOO) algorithm for use in the early detection of AD and show how the SVM-RFE-LOO method can be used for both classification and prediction of AD. Methods: Data were analyzed on n = 300 participants (n = 150 AD; n = 150 cognitively normal controls). Serum samples were assayed via a multi-plex biomarker assay platform using electrochemiluminescence (ECL). Results: The SVM-RFE-LOO method reduced the number of features in the model from 21 to 16 biomarkers and achieved an area under the curve (AUC) of 0.980 with a sensitivity of 94.0% and a specificity of 93.3%. When the classification and prediction performance of SVM-RFE-LOO was compared to that of SVM and SVM-RFE, we found similar performance across the models; however, the SVM-RFE-LOO method utilized fewer markers. Conclusion: We found that 1) the SVM-RFE-LOO is suitable for analyzing noisy high-throughput proteomic data, 2) it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features, and 3) it can improve the prediction performance. Our recursive feature elimination model can serve as a general model for biomarker discovery in other diseases.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3