AITeQ: a machine learning framework for Alzheimer’s prediction using a distinctive five-gene signature

Author:

Ahammad Ishtiaque1ORCID,Lamisa Anika Bushra1,Bhattacharjee Arittra1ORCID,Jamal Tabassum Binte1,Arefin Md Shamsul2,Chowdhury Zeshan Mahmud1,Hossain Mohammad Uzzal1ORCID,Das Keshob Chandra3,Keya Chaman Ara2,Salimullah Md3

Affiliation:

1. Bioinformatics Division, National Institute of Biotechnology , Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh

2. Department of Biochemistry and Microbiology, North South University , Bashundhara, Dhaka 1229, Bangladesh

3. Molecular Biotechnology Division, National Institute of Biotechnology , Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh

Abstract

Abstract Neurodegenerative diseases, such as Alzheimer’s disease, pose a significant global health challenge with their complex etiology and elusive biomarkers. In this study, we developed the Alzheimer’s Identification Tool (AITeQ) using ribonucleic acid-sequencing (RNA-seq), a machine learning (ML) model based on an optimized ensemble algorithm for the identification of Alzheimer’s from RNA-seq data. Analysis of RNA-seq data from several studies identified 87 differentially expressed genes. This was followed by a ML protocol involving feature selection, model training, performance evaluation, and hyperparameter tuning. The feature selection process undertaken in this study, employing a combination of four different methodologies, culminated in the identification of a compact yet impactful set of five genes. Twelve diverse ML models were trained and tested using these five genes (CNKSR1, EPHA2, CLSPN, OLFML3, and TARBP1). Performance metrics, including precision, recall, F1 score, accuracy, Matthew’s correlation coefficient, and receiver operating characteristic area under the curve were assessed for the finally selected model. Overall, the ensemble model consisting of logistic regression, naive Bayes classifier, and support vector machine with optimized hyperparameters was identified as the best and was used to develop AITeQ. AITeQ is available at: https://github.com/ishtiaque-ahammad/AITeQ.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3