Spin orbit magnetic random access memory based binary CNN in-memory accelerator (BIMA) with sense amplifier

Author:

Kalaichelvi K.1,Sundaram M.2,Sanmugavalli P.3

Affiliation:

1. V.S.B. Engineering College, Karur, Tamilnadu, India

2. Erode Sengunthar Engineering College, Erode, Tamilnadu, India

3. M. Kumarasamy College of Engineering, Karur, Tamilnadu, India

Abstract

The research tends to suggest a spin-orbit torque magnetic random access memory (SOT-MRAM)-based Binary CNN In-Memory Accelerator (BIMA) to minimize power utilization and suggests an In-Memory Computing (IMC) for AdderNet-based BIMA to further enhance performance by fully utilizing the benefits of IMC as well as a low current consumption configuration employing SOT-MRAM. And recommended an IMC-friendly computation pipeline for AdderNet convolution at the algorithm level. Additionally, the suggested sense amplifier is not only capable of the addition operation but also typical Boolean operations including subtraction etc. The architecture suggested in this research consumes less power than its spin-orbit torque (STT) MRAM and resistive random access memory (ReRAM)-based counterparts in the Modified National Institute of Standards and Technology (MNIST) data set, according to simulation results. Based to evaluation outcomes, the pre-sented strategy outperforms the in-memory accelerator in terms of speedup and energy efficiency by 17.13× and 18.20×, respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference9 articles.

1. PXNOR-BNN: In/with spin-orbit torque MRAM preset-XNORoperation-based binary neural networks;Chang Liang;IEEE Transactions onVery Large Scale Integration (VLSI) Systems,2019

2. Zhao Yinglin , Jianlei Yang , Bing Li , Xingzhou Cheng , Xucheng Ye , Xueyan Wang , Xiaotao Jia , Zhaohao Wang , YouguangZhang , Weisheng Zhao NAND-SPIN-Based Processing-in-MRAM Architecture for Convolutional Neural NetworkAcceleration, arXiv preprint arXiv 2204(09989) (2022). https://doi.org/10.48550/arXiv.2204.09989

3. Low-energy acceleration of binarized convolutional neuralnetworks using a spin Hall effect based logic-in-memoryarchitecture;Samiee Ashkan;IEEE Transactions on Emerging Topics inComputing,2019

4. SOT-MRAM Digital PIM Architecture With Extended Parallelism in Matrix Multiplication

5. A survey on memorysubsystems for deep neural network accelerators;Asad Arghavan;FutureInternet,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3