Predicting In-Hospital Death from Derived EHR Trajectory Features

Author:

Bopche Rajeev1ORCID,Gustad Lise Tuset2ORCID,Afset Jan Egil1ORCID,Damås Jan Kristian1ORCID,Nytrø Øystein1ORCID

Affiliation:

1. Norwegian University of Science and Technology, Trondheim, Norway

2. Nord University, Levanger, Norway

Abstract

Medical histories of patients can predict a patient’s immediate future. While most studies propose to predict survival from vital signs and hospital tests within one episode of care, we carried out selective feature engineering from longitudinal medical records in this study to develop a dataset with derived features. We thereafter trained multiple machine learning models for the binary prediction of whether an episode of care will culminate in death among patients suspected of bloodstream infections. The machine learning classifier performance is evaluated and compared and the feature importance impacting the model output is explored. The extreme gradient boosting model achieved the best performance for predicting death in the next hospital episode with an accuracy of 92%. Age at the time of the first visit, length of history, and information related to recent episodes were the most critical features.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3