Inhospital Mortality, Readmission, and Prolonged Length of Stay Risk Prediction Leveraging Historical Electronic Health Records

Author:

Bopche RajeevORCID,Gustad Lise Tuset,Afset Jan Egil,Ehrnström Birgitta,Damås Jan Kristian,Nytrø Øystein

Abstract

AbstractObjectiveThe aim of this study was to investigate predictive capabilities of historical records of patients maintained at hospitals towards predicting an impending adverse outcomes such as, mortality, readmission, and prolonged length of stay (PLOS).MethodsLeveraging a de-identified dataset from a tertiary care university hospital, we developed a eXplainable Artificial Intelligence (XAI) framework combining tree-based and traditional ML models with interpretations, and statistical analysis of predictors of mortality, readmission, and PLOS.ResultsOur framework demonstrated exceptional predictive performance with notable Area Under the Receiver Operating Characteristic (AUROC) of 0.9625 and Area Under the Precision-Recall Curve (AUPRC) of 0.8575 for 30-day mortality at discharge and an AUROC of 0.9545 and AUPRC of 0.8419 at admission. For the readmission and PLOS risk the highest AUROC achieved were 0.8198 and 0.9797 repectively. The tree-based machine learning (ML) models consistently outperformed the traditional ML models in all the four prediction tasks. The key predictors were age, derived temporal features, routine laboratory tests, and diagnostic and procedural codes.ConclusionThe study underscores the potential of leveraging medical history for enhanced predictive analytics in hospitals. We present a accurate and intuitive framework for early warning models that can be easily implemented in the current and developing digital health platforms to accurately predict adverse outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3