Abstract
AbstractObjectiveThe aim of this study was to investigate predictive capabilities of historical records of patients maintained at hospitals towards predicting an impending adverse outcomes such as, mortality, readmission, and prolonged length of stay (PLOS).MethodsLeveraging a de-identified dataset from a tertiary care university hospital, we developed a eXplainable Artificial Intelligence (XAI) framework combining tree-based and traditional ML models with interpretations, and statistical analysis of predictors of mortality, readmission, and PLOS.ResultsOur framework demonstrated exceptional predictive performance with notable Area Under the Receiver Operating Characteristic (AUROC) of 0.9625 and Area Under the Precision-Recall Curve (AUPRC) of 0.8575 for 30-day mortality at discharge and an AUROC of 0.9545 and AUPRC of 0.8419 at admission. For the readmission and PLOS risk the highest AUROC achieved were 0.8198 and 0.9797 repectively. The tree-based machine learning (ML) models consistently outperformed the traditional ML models in all the four prediction tasks. The key predictors were age, derived temporal features, routine laboratory tests, and diagnostic and procedural codes.ConclusionThe study underscores the potential of leveraging medical history for enhanced predictive analytics in hospitals. We present a accurate and intuitive framework for early warning models that can be easily implemented in the current and developing digital health platforms to accurately predict adverse outcomes.
Publisher
Cold Spring Harbor Laboratory