First Biodistribution Study of [68Ga]Ga-NOTA-Insulin Following Intranasal Administration in Adult Vervet Monkeys

Author:

Solingapuram Sai Kiran Kumar1,Erichsen Jennifer M.2,Gollapelli Krishna K.1,Krizan Ivan1,Miller Mack1,Bansode Avinash1,Jorgensen Mathew J.3,Register Thomas3,Cazzola Charles4,Gandhi Reenal5,Suman Julie5,Craft Suzanne2

Affiliation:

1. Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA

2. Department of Internal Medicine, Division of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA

3. Department of Pathology, Division of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA

4. Aptar Pharma, Le Vaudreuil, France

5. Aptar Pharmaceuticals, Congers, NY, USA

Abstract

Background: Intranasal insulin (INI) is being explored as a treatment for Alzheimer’s disease (AD). Improved memory, functional ability, and cerebrospinal fluid (CSF) AD biomarker profiles have been observed following INI administration. However, the method of intranasal delivery may significantly affect outcomes. Objective: To show reliable delivery of insulin to the brain using the Aptar Cartridge Pump System (CPS) intranasal delivery system. Methods: To visualize INI biodistribution, we developed a novel PET radiotracer, Gallium 68-radiolabeled (NOTA-conjugated) insulin, [68Ga]Ga-NOTA-insulin. We used the Aptar CPS to administer [68Ga]Ga-NOTA-insulin to anesthetized healthy adult vervet monkeys and measured brain regional activity and whole-body dosimetry following PET/CT scans. Results: We observed brain penetration of [68Ga]Ga-NOTA-insulin following intranasal administration with the Aptar CPS. Radioactive uptake was seen in multiple regions, including the amygdala, putamen, hypothalamus, hippocampus, and choroid plexus. A safety profile and whole-body dosimetry were also established in a second cohort of vervets. Safety was confirmed: vitals remained stable, blood glucose levels were unchanged, and no organ was exposed to more than 2.5 mSv of radioactivity. Extrapolations from vervet organ distribution allowed for estimation of the [68Ga]Ga-NOTA-insulin absorbed dose in humans, and the maximum dose of [68Ga]Ga-NOTA-insulin that can be safely administered to humans was determined to be 185 MBq. Conclusions: The use of [68Ga]Ga-NOTA-insulin as a PET radiotracer is safe and effective for observing brain uptake in vervet monkeys. Further, the Aptar CPS successfully targets [68Ga]Ga-NOTA-insulin to the brain. The data will be essential in guiding future studies of intranasal [68Ga]Ga-NOTA-insulin administration in humans.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3