An intelligent flow-based and signature-based IDS for SDNs using ensemble feature selection and a multi-layer machine learning-based classifier

Author:

Muthamil Sudar K.,Deepalakshmi P.

Abstract

Software-defined networking is a new paradigm that overcomes problems associated with traditional network architecture by separating the control logic from data plane devices. It also enhances performance by providing a highly-programmable interface that adapts to dynamic changes in network policies. As software-defined networking controllers are prone to single-point failures, providing security is one of the biggest challenges in this framework. This paper intends to provide an intrusion detection mechanism in both the control plane and data plane to secure the controller and forwarding devices respectively. In the control plane, we imposed a flow-based intrusion detection system that inspects every new incoming flow towards the controller. In the data plane, we assigned a signature-based intrusion detection system to inspect traffic between Open Flow switches using port mirroring to analyse and detect malicious activity. Our flow-based system works with the help of trained, multi-layer machine learning-based classifier, while our signature-based system works with rule-based classifiers using the Snort intrusion detection system. The ensemble feature selection technique we adopted in the flow-based system helps to identify the prominent features and hasten the classification process. Our proposed work ensures a high level of security in the Software-defined networking environment by working simultaneously in both control plane and data plane.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference34 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3